• Users Online: 589
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2017  |  Volume : 17  |  Issue : 3  |  Page : 261-266

Evaluation and comparison of shear bond strength of porcelain to a beryllium-free alloy of nickel-chromium, nickel and beryllium free alloy of cobalt-chromium, and titanium: An in vitro study

Department of Prosthodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bengaluru, Karnataka, India

Correspondence Address:
Ananya Singh
House No 20, Anand Nilaya, 3rd Cross, Childnanda Layout, Cholanagar, Post-RT Nagar, Hebbal, Bengaluru, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jips.jips_337_16

Rights and Permissions

Aims: The aim of this study was to evaluate and compare the shear bond strength of porcelain to the alloys of nickel-chromium (Ni-Cr), cobalt-chromium (Co-Cr), and titanium. Materials and Methods: A total of 40 samples (25 mm × 3 mm × 0.5 mm) were fabricated using smooth casting wax and cast using Ni-Cr, Co-Cr, and titanium alloys followed by porcelain buildup. The samples were divided into four groups with each group containing 10 samples (Group A1–10: sandblasted Ni-Cr alloy, Group B1–10: sandblasted Co-Cr alloy, Group C1–10: nonsandblasted titanium alloy, and Group D1–10: sandblasted titanium alloy). Shear bond strength was measured using a Universal Testing Machine. Statistical Analysis Used: ANOVA test and Tukey's honestly significance difference post hoc test for multiple comparisons. Results: The mean shear bond strength values for these groups were 22.8960, 27.4400, 13.2560, and 25.3440 MPa, respectively, with sandblasted Co-Cr alloy having the highest and nonsandblasted titanium alloy having the lowest value. Conclusion: It could be concluded that newer nickel and beryllium free Co-Cr alloys and titanium alloys with improved strength to weight ratio could prove to be good alternatives to the conventional nickel-based alloys when biocompatibility was a concern.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded233    
    Comments [Add]    
    Cited by others 1    

Recommend this journal