• Users Online: 616
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 21  |  Issue : 3  |  Page : 295-303

Evaluation of the failure modes and load-bearing capacity of different surface-treated polyether ether ketone copings veneered with lithium di-silicate compared to polyether ether ketone copings veneered with composite: An in vitro study


Department of Prosthodontics, Crown and Bridge, Maulana Azad Institute of Dental Sciences, New Delhi, India

Correspondence Address:
Abhishek Kumar Gupta
Department of Prosthodontics, Crown and Bridge, Maulana Azad Institute of Dental Sciences, Bahadur Shah Zafar Marg, New Delhi - 110 002
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jips.jips_86_21

Rights and Permissions

Aims: The purpose of this study is to compare and evaluate the failure modes and load-bearing capacity of different surface-treated polyether ether ketone (PEEK) copings when veneered with lithium di-silicate with that of PEEK veneered with composite. Settings and Design: In vitro; comparative study. Materials and Methods: Congruently anatomically shaped single unit PEEK copings (n = 40) were fabricated by scanning a prepared typodont tooth. The PEEK copings were subdivided among four groups (n = 10/group). Among all, one group of PEEK coping was veneered with Urethane dimethacrylate (UDMA)-based composite and other groups were veneered with lithium-di-silicate after different surface treatment on peek copings, i.e., (i) composite veneered PEEK fixed dental prosthesis (FDP) (control group: Group PC), (ii) lithium di-silicate veneered PEEK FDP (no surface treatment: Group PCeN), (iii) lithium di-silicate veneered PEEK FDP (sandblasting with 50 μm alumina: Group PCeS), and (iv) lithium di-silicate veneered PEEK FDP (chemical etching with 98% sulfuric acid: Group PCeE). The load-bearing capacity of all specimens was assessed using a universal test machine. All the samples were loaded till the cracking point and load at that point and failure modes were noted down. Statistical Analysis Used: One-way ANOVA and post hoc Tukey tests. Results: The highest load-bearing capacity was recorded for lithium di-silicate veneered PEEK copings which were chemically etched with 98% sulfuric acid (Group PCeE: 1040.25 ± 77.46) followed by Group PCeS (1017.20 ± 53.70), then Group PC (965 ± 51.57) and least was for Group PCeN (933 ± 97.54). There was a significant reduction in mean load-bearing capacity in Group PCeN (P < 0.05). Conclusions: Veneering of PEEK with pressed lithium di-silicate seems to be a viable clinical option in terms of adequate load-bearing capacity. Lithium di-silicate veneered PEEK FDPs were successful against physiological occlusal forces and are a suitable material for FDPs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed250    
    Printed0    
    Emailed0    
    PDF Downloaded67    
    Comments [Add]    

Recommend this journal