• Users Online: 292
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2022  |  Volume : 22  |  Issue : 4  |  Page : 338-342

Stability of implant–abutment connection in three different systems after fatigue test

1 Dental Implants Research Center, Department of Prosthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
2 Dental Materials Research Center, Department of Prosthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Prosthodontics, School of Dentistry, Qom, Iran
4 Department of Prosthodontics, School of Dentistry, Shahrekord University of Medical Sciences, Shahrekord, Iran

Correspondence Address:
Mohmoud Sabouhi
Department of Prosthodontics, Dental Implants Research Center, School of Dentistry, Isfahan University of Medical Sciences, Hezarjarib St, Isfahan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jips.jips_247_21

Rights and Permissions

Aim: Abutment screw loosening of implant-supported prosthesis causes a mismatch between the abutment and the implant. This screw loosening is influenced by the implant–abutment connection type, however, with contradictory results reported in different studies. The present study evaluates the stability of abutment–implant connections in three different systems before and after the fatigue test. Settings and Design: Thirty implants (4.3 mm in diameter and 12 mm in length) were divided into three groups of 10: Implantium, Zimmer, and straight internal hexagonal connection (SIC) implants. Materials and Methods: Two torques of 35 Ncm with an interval of 10 min were applied, followed by measuring removal torque value (RTV). The samples were re-torqued and then underwent a simulation of 1-year chewing clinical performance of dental implant under axial force of 400 N, with a frequency of 8 Hz (one million cycles). After fatigue test, the RTV was calculated and recorded. Statistical Analysis: The mean RTVs obtained before and after cyclic load were analyzed by SPSS version 22 software using multivariate analysis. Results: Significant differences in RTV and role of cyclic loading were found between SIC and Implantium groups (P = 0.006 and 0.021, respectively), as well as between Zimmer and SIC groups (P = 0.032 and 0.006, respectively), but not between Zimmer and Implantium groups (P = 0.771 and 0.248, respectively). Conclusion: The type of connection could affect the screw loosening, the preload loss, and the implant component stability. SIC group revealed the highest RTVs before and after cyclic loading.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded117    
    Comments [Add]    

Recommend this journal