• Users Online: 1080
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
RESEARCH
Year : 2022  |  Volume : 22  |  Issue : 4  |  Page : 398-404

Do digital impressions have a greater accuracy for full-arch implant-supported reconstructions compared to conventional impressions? An in vitro study


1 Department of Prosthodontics and Implantology, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
2 Department of Oral Pathology and Microbiology, Dr. D. Y. Patil College and Hospital, Pune, Maharashtra, India

Date of Submission01-Feb-2022
Date of Decision17-Jul-2022
Date of Acceptance18-Jul-2022
Date of Web Publication03-Oct-2022

Correspondence Address:
Mohit Kheur
M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jips.jips_52_22

Rights and Permissions
  Abstract 


Aim: The purpose of this study was to compare the accuracy of conventional implant impressions with digital impression techniques made using two different intraoral scanners.
Setting and Design: In-Vitro study.
Material and Methods: A scan of master cast containing four implants was made using two intraoral scanners: CEREC Primescan (Dentsply Sirona, USA) and 3Shape Trios (Copenhagen, Denmark) with PEEK scan bodies attached to the implants. Model was scanned ten times using different scanners. The accuracy of the chairside scanners was compared with highly accurate laboratory scanner. The scans were transferred into the software (Geomagic Control X 20, 3D Systems, Rock Hill, SC, USA) for analysis. The linear deviations and the angular deviations between the scans (scan of each model made using high-definition scanner and the master model scan) were calculated to determine the accuracy. Trueness was used as a parameter to compare the accuracy of different scanners (comparing test and reference).
Statistical Analysis: Analysis of variance was performed with Bonferroni's post hoc test for multiple group comparisons.
Results: Distribution of the mean overall absolute linear deviation was significantly lower in the conventional impression group compared to the CEREC Primescan scanner group and 3Shape Trios group (P < 0.05 for both). Distribution of the mean overall absolute linear deviation was significantly lower in the CEREC Primescan scanner group compared to the 3Shape Trios group (P < 0.05). Distribution of the mean overall absolute angular deviation did not differ between the three groups (P > 0.05 for all).
Conclusion: Conventional impressions showed significantly greater accuracy compared to the digital impressions made with both the above intraoral scanners for implant-supported restoration of an edentulous arch. In addition, the digital impressions with the CEREC Primescan scanner showed greater accuracy as compared to the 3Shape Trios scanner.

Keywords: Accuracy, digital impressions, edentulous arch


How to cite this article:
Shaikh M, Lakha T, Kheur S, Qamri B, Kheur M. Do digital impressions have a greater accuracy for full-arch implant-supported reconstructions compared to conventional impressions? An in vitro study. J Indian Prosthodont Soc 2022;22:398-404

How to cite this URL:
Shaikh M, Lakha T, Kheur S, Qamri B, Kheur M. Do digital impressions have a greater accuracy for full-arch implant-supported reconstructions compared to conventional impressions? An in vitro study. J Indian Prosthodont Soc [serial online] 2022 [cited 2022 Dec 7];22:398-404. Available from: https://www.j-ips.org/text.asp?2022/22/4/398/357801

Tabrez Lakha and Supriya Kheur share equal contribution for 2nd Authorship





  Introduction Top


Dental implants are commonly used as an alternative to conventional partial or complete dentures for individuals with missing teeth, as they offer higher function, retention, and ease of use.[1],[2]

Models made out of gypsum, poured from a physical elastomeric impression material, have been employed commonly to make implant-retained prostheses. To achieve an accurate prosthetic fit, the transfer of implant angulation and position is imperative.[3] Over the years, different techniques and materials have been used and evolved to improve and accurately replicate the implant position from the intraoral situation to the master cast.[4] If this step is not performed accurately, then it could lead to duplication of errors in the following steps of prosthesis fabrication.[5],[6],[7],[8],[9],[10]

Digital implant dentistry has transformed the way impressions are recorded, and more importantly, the laboratory protocols followed thereafter. With the advent of digital impressions, the workflow of prosthetic reconstruction has been simplified by elimination of multiple steps such as tray selection and shipping to the laboratory. This has reduced the treatment time and has improvised patient compliance.[11],[2],[13]

A digital impression file eliminates storage issues as it is stored in digital library, which enables an efficient record keeping with a paper-free practice. Other than the learning curve in learning and using the new technology, there are financial limitations like the purchasing cost of an intraoral scanner. There are many scanners available for making digital impressions. These work on different image-capturing principles, and hence, their accuracies may not be the same.[14],[16],[17],[19],[18] The CEREC Primescan (Dentsply Sirona, USA) is an intraoral scanner that uses a white light for pattern projection onto an object; this concept is known as active triangulation. The images are captured in color continuously, eliminating the need of contrast spraying.[19] The Trios scanner (3Shape, Copenhagen, Denmark) is designed on the concept of confocal microscopy that records images from different positions in a continuous manner to create a 3D image. The latest model records color data without contrast spraying.[19] Accuracy has been described in the literature using two parameters such as trueness and precision (ISO 5725-1). Trueness describes the closeness to the actual dimensions of the object.[20],[21],[22] Precision is represented by the degree of reproducibility between repeated measurements.

Accuracy of scanners and conventional impressions have been previously described in the literature.[6],[7],[8] However, studies comparing the accuracy of the scanner with working on different principles that as optical triangulation and confocal microscopy on axial and tilted implants, used to restore edentulous arches, are still not reported adequately in the literature.

This study analyzes both the linear deviation and the angular deviation to evaluate the difference in the accuracy of conventional implant impressions and digital impression techniques made using these two different intraoral scanners.


  Materials and Methods Top


Fabrication of master model and master control STL files

Four dental implants, Bone Level Tapered 4.1 mm × 10 mm (RC, SLActive, Straumann AG, Switzerland, Basel), were placed in a sawdust model of an edentulous mandible. Anteriorly, implants were placed straight, and posteriorly, implants were placed at a 10° distal[11],[12],[13] angulation. This served as the master model [Figure 1].
Figure 1: Sawdust model of an edentulous mandible with implants placed (control model)

Click here to view


Four scan bodies (Cares® RC Mono Scanbody, RC, BLT, Straumann, Basel, Switzerland) were then connected to the implants and tightened as recommended by the manufacturer [Figure 2]. The master model was scanned using a high-definition scanner (Artec 3D, Luxembourg, Europe) to obtain a STL file. This was the control STL file [Figure 3].
Figure 2: Scan bodies are attached to the analogs (Cares® RC Mono Scanbody, RC, BLT, Straumann)

Click here to view
Figure 3: Control STL file

Click here to view


There were three study groups (N = 30):

  1. Group A: Impressions made by conventional technique (n = 10)
  2. Group B: Impressions made by intraoral scanner CEREC Primescan (Dentsply Sirona, USA) (n = 10)
  3. Group C: Impressions made by intraoral scanner Trios 3Shape scanner (3Shape, Copenhagen, Denmark) (n = 10).


Group A

Using the open-tray impression technique, implant-level copings were fixed to the implants on the control/master model. Splinting of the open-tray impression copings was done using self-cure acrylic resin (Pattern Resin LS, GC America). Tray adhesive (Impregum; 3M ESPE, USA) was applied onto the intaglio surface of the custom tray. The impression was made only after drying the tray adhesive for 15 min. Using polyether impression material (Impregum; 3M ESPE, USA), ten impressions per group (A, B, and C) were made following standard procedure. The lab analogs were attached to the copings, and ten models were made. Scan bodies were fixed to each of the analogs, and each model was then scanned with the high-definition scanner (Artec 3D, Luxembourg, Europe), and the data, in the form of 3D images, were created and exported as an open-source STL file.

Group B

Using the scan bodies (Cares® RC Mono Scanbody, RC, BLT, Straumann, Basel, Switzerland), digital impressions were made with CEREC Primescan (Dentsply Sirona, USA), ten times, according to the manufacturer's instruction and exported as STL files [Figure 4].
Figure 4: STL file created by CEREC Prime scanner

Click here to view


Group C

Using the same scan bodies (Cares® RC Mono Scanbody, RC, BLT, Straumann, Basel, Switzerland) in place, ten digital impressions were made by the intraoral scanner 3Shape Trios (Copenhagen, Denmark) and exported as STL files [Figure 5].
Figure 5: STL file created by 3Shape Trios

Click here to view


Data analysis

All the scans were transferred into the metrology software (Geomagic Control X 20, 3D Systems, Rock Hill, SC, USA) for data analyses. Best fit algorithm was used; the tolerance was set at 1 μm; the control STL file of the master model [Figure 3] was superimposed to the four scan bodies and saved as a new STL file. This method was allowed for comparing the scan bodies only, minus the other irrelevant areas. As Ender and Mehl defined,[23] accuracy comprised the following two parameters: trueness depicts the degree of resemblance between the test scan and the scan taken by the scanner, while precision describes the variation between the test scans. The primary objective was, therefore, to ascertain and evaluate the accuracy, which includes trueness at the level of the scan bodies. Test scans and control scans were superimposed [Figure 6] and [Figure 7] using an algorithm with the tolerance set at 1 μm. Following this, a 3D comparison was made, calculating the linear [Table 1] and angular [Table 2] mean deviation from the mean positive and negative deviation using the methodology previously described by Papaspyridakos et al. (2016).[24]
Figure 6: Superimposition and measurement of linear deviation

Click here to view
Figure 7: Superimposition and measurement of angular deviation

Click here to view
Table 1: Distribution of the mean absolute linear deviations in different groups studied

Click here to view
Table 2: Distribution of the mean angular deviations in different groups studied

Click here to view



  Results Top


Distribution of the mean overall absolute linear deviation was statistically significantly lower in the conventional impression group as compared to the CEREC Primescan scanner and 3Shape Trios groups (P < 0.05 for both) [Table 3] and [Figure 8].
Table 3: Intergroup statistical comparison of distribution of the mean absolute linear deviation in different groups studied

Click here to view
Figure 8: Distribution of the mean linear deviations in different groups studied (absolute deviation in mm)

Click here to view


Distribution of the mean overall absolute linear deviation was statistically significantly lower in the CEREC Primescan scanner group as compared to the 3Shape Trios group (P < 0.05).

Distribution of the mean overall absolute angular deviation did not differ significantly across the three types of scanner groups in intraoral model (P > 0.05 for all) [Table 4] and [Figure 9].
Table 4: Intergroup statistical comparison of distribution of the mean angular deviation in different groups studied

Click here to view
Figure 9: Distribution of the mean angular deviations in different groups studied (absolute deviation in degrees)

Click here to view



  Discussion Top


This study evaluated the linear and angular deviations produced by the three groups by comparing them to a master model which underwent scanning by a laboratory scanner (Artec 3D Space Spider, Luxembourg, Europe). Su and Sun compared the accuracy of 3ShapeTrios scanner and with a laboratory scanner by evaluating the precision between the two (Lava Scan ST). They found that the precision was significantly lower for 3Shape Trios, and the deviation was directly proportional to the number of teeth scanned during the procedure.[22]

The results of this study demonstrated the highest linear deviation for 3Shape Trios, followed by CEREC Primescan with the conventional impressions showing the least deviation in comparison to master model. A statistically significant difference was noted between the conventional impression group and CEREC Primescan (P < 0.05), between conventional impressions and 3Shape Trios, and between CEREC and 3Shape Trios (P < 0.001) groups regarding linear deviation. 3Shape Trios demonstrated the highest angular deviation at impression and scan level, followed by CEREC Primescan and conventional impression, respectively. Comparison of angular deviation at impression and scan level was found to be statistically insignificant in this research.

Digital impressions may have varied accuracy levels which largely depend on multiple factors such as scanning technique, size of the scan field, the angulation, number of implants, and the scan body fit.[25],[26] The results of this study are in agreement with the studies conducted by Papaspyridakos et al. and Ender and Mehl where the authors conclude that there was statistically no significant difference observed between the accuracy of conventional and digital impressions.[23],[24] However, studies conducted by Giménez et al. showed that the scanner recorded the first quadrant rather accurately, whereas for the second quadrant, the trueness significantly decreased.[27] Stimmelmayr et al. noted that there was a statistically significant difference in the scan body fit between laboratory analogs and implants.[28]

In this study, the conventional impressions were noted to be more accurate as compared to intraoral scans. This could be attributed to the fact that the open-tray splinted impressions have known to have a higher accuracy as compared to other impression techniques. Similar results were noted in several studies that reported high accuracy of open-tray splinting impression technique for internal connection implants.[29],[30],[31],[32] The splinting of open-tray posts to each other does not permit any movement of the posts while making or retrieving the impression. Scan was made with high accuracy lab scanner. Furthermore, it has been observed that digital workflow has its own operator-based challenges. A study conducted by Giménez et al. reported that digital impression making has its own learning curve and the clinician needs adequate practice to reproduce or make precise intraoral scans.[33] This study compares both the liner deviation and the angular deviation of the impressions made using conventional method and digital intraoral scanners.

The limitations of this study are as follows: (i) owing to its in vitro design, this study oversimplifies impression making as the scans are recorded from a simplified model, where the implants were placed linearly; and (ii) intraoral scanning may show increased inaccuracies intraorally owning to the highly contrasting environments.[34]

The other difference lies in the stability of the surfaces scanned. The soft-tissue texture and form varies depending on the patient's jaw movements, thereby complicating the procedure of the scanning because it depends on the presence of reference points which are fixed (Andriessen et al.).[35] Similarly, it has been observed that an increase in interimplant distance along with a flat and dynamic mucosal surface results in an insufficiency of definitive reference points to enable accurate stitching Giménez et al.[33] In this research, the implant positions were near to one another. The implication, therefore, would be that the interimplant distance is directly proportional to the scanning difficulty, and therefore, indirectly proportional to the accuracy. Clinically, biological factors such as saliva, gingival fluid, blood, breathing pattern, and movements of the tongue are some of the factors that contribute to reduction in accuracy.[34] Furthermore, the use of high-definition scanner for the master model and the conventional impression was a confounding factor in the study.

In addition, another limitation is that only a single implant system was used. Further studies should be carried out in a clinical setup with different implant systems and scanners of different technology specifications as well before clinical recommendations can be made for the treatment of an edentulous patient. Future studies should evaluate the accuracy of implants placed with higher angulation.

Pertaining to the clinical scenario, intraoral scanners show a great potential to physical impressions for implant prosthesis. However, for full edentulous situations, especially with a greater interimplant distance, a conventional open-tray impression with splinted impression posts may be the most accurate solution as the intraoral scanners do not get enough reference points in the edentulous arch and this leads to further inaccuracies. Furthermore, virtual images obtained can be printed or milled into physical models to draw a comparison with stone models which help establish a framework for the assessment of the clinical results. The ITI consensus statements also state that for edentulous impressions, the use of scans is not still recommended.[36]


  Conclusion Top


The following can be concluded based on the research performed in this study:

  1. The conventional impressions showed a high level of accuracy for implant-supported restoration of an edentulous arch
  2. Digital impressions made using the scanner that works on optical triangulation principle and uses white LED light had a greater accuracy as compared to impressions made using the scanner working on the principle of ultrafast optical scanning and confocal microscopy
  3. When all the three impression techniques were compared, conventional impressions showed significantly greater accuracy compared to the digital impressions made with both the above intraoral scanners for implant-supported restoration of an edentulous arch.


Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416.  Back to cited text no. 1
    
2.
Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants in posterior partially edentulous patients. Implant Dent 1993;2:270-1.  Back to cited text no. 2
    
3.
Karl M, Winter W, Taylor TD, Heckmann SM. In vitro study on passive fit in implant-supported 5-unit fixed partial dentures. Int J Oral Maxillofac Implants 2004;19:30-7.  Back to cited text no. 3
    
4.
Chandran DT, Jagger DC, Jagger RG, Barbour ME. Two- and three-dimensional accuracy of dental impression materials: Effects of storage time and moisture contamination. Biomed Mater Eng 2010;20:243-9.  Back to cited text no. 4
    
5.
Pradíes G, Zarauz C, Valverde A, Ferreiroa A, Martínez-Rus F. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. J Dent 2015;43:201-8.  Back to cited text no. 5
    
6.
Tsirogiannis P, Reissmann DR, Heydecke G. Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. J Prosthet Dent 2016;116:328-35.e2.  Back to cited text no. 6
    
7.
Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont 2017;26:581-6.  Back to cited text no. 7
    
8.
Vennerstrom M, Fakhary M, Von Steyern PV. The fit of crowns produced using digital impression systems. Swed Dent J 2014;38:101-10.  Back to cited text no. 8
    
9.
Tan KB, Rubenstein JE, Nicholls JI, Yuodelis RA. Three-dimensional analysis of the casting accuracy of one-piece, osseointegrated implant-retained prostheses. Int J Prosthodont 1993;6:346-63.  Back to cited text no. 9
    
10.
Christensen GJ. Impressions are changing: Deciding on conventional, digital or digital plus in-office milling. J Am Dent Assoc 2009;140:1301-4.  Back to cited text no. 10
    
11.
Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Brånemark dental implants: A study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-6.  Back to cited text no. 11
    
12.
Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: A 5-year analysis. J Periodontol 1991;62:2-4.  Back to cited text no. 12
    
13.
Ma J, Rubenstein JE. Complete arch implant impression technique. J Prosthet Dent 2012;107:405-10.  Back to cited text no. 13
    
14.
Spector MR, Donovan TE, Nicholls JI. An evaluation of impression techniques for osseointegrated implants. J Prosthet Dent 1990;63:444-7.  Back to cited text no. 14
    
15.
McCabe JF, Storer R. Elastomeric impression materials. The measurement of some properties relevant to clinical practice. Br Dent J 1980;149:73-9.  Back to cited text no. 15
    
16.
Ciesco JN, Malone WF, Sandrik JL, Mazur B. Comparison of elastomeric impression materials used in fixed prosthodontics. J Prosthet Dent 1981;45:89-94.  Back to cited text no. 16
    
17.
Carr A. A comparison of impression techniques for a five-implant mandibular model. Implant Dent 1992;1:232.  Back to cited text no. 17
    
18.
Wee AG. Comparison of impression materials for direct multi-implant impressions. J Prosthet Dent 2000;83:323-31.  Back to cited text no. 18
    
19.
Vandeweghe S, Vervack V, Dierens M, De Bruyn H. Accuracy of digital impressions of multiple dental implants: An in vitro study. Clin Oral Implants Res 2017;28:648-53.  Back to cited text no. 19
    
20.
Abduo J, Elseyoufi M. Accuracy of intraoral scanners: A systematic review of influencing factors. Eur J Prosthodont Restor Dent 2018;26:101-21.  Back to cited text no. 20
    
21.
Schimmel M, Akino N, Srinivasan M, Wittneben JG, Yilmaz B, Abou-Ayash S. Accuracy of intraoral scanning in completely and partially edentulous maxillary and mandibular jaws: An in vitro analysis. Clin Oral Investig 2021;25:1839-47.  Back to cited text no. 21
    
22.
Su TS, Sun J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: An in-vitro study. J Prosthodont Res 2015;59:236-42.  Back to cited text no. 22
    
23.
Ender A, Mehl A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J Prosthet Dent 2013;109:121-8.  Back to cited text no. 23
    
24.
Papaspyridakos P, Gallucci GO, Chen CJ, Hanssen S, Naert I, Vandenberghe B. Digital versus conventional implant impressions for edentulous patients: Accuracy outcomes. Clin Oral Implants Res 2016;27:465-72.  Back to cited text no. 24
    
25.
Lee SJ, Betensky RA, Gianneschi GE, Gallucci GO. Accuracy of digital versus conventional implant impressions. Clin Oral Implants Res 2015;26:715-9.  Back to cited text no. 25
    
26.
Gedrimiene A, Adaskevicius R, Rutkunas V. Accuracy of digital and conventional dental implant impressions for fixed partial dentures: A comparative clinical study. J Adv Prosthodont 2019;11:271-9.  Back to cited text no. 26
    
27.
Giménez B, Özcan M, Martínez-Rus F, Pradíes G. Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth. Int J Oral Maxillofac Implants 2014;29:853-62.  Back to cited text no. 27
    
28.
Stimmelmayr M, Güth JF, Erdelt K, Edelhoff D, Beuer F. Digital evaluation of the reproducibility of implant scanbody fit – An in vitro study. Clin Oral Investig 2012;16:851-6.  Back to cited text no. 28
    
29.
Gallucci GO, Papaspyridakos P, Ashy LM, Kim GE, Brady NJ, Weber HP. Clinical accuracy outcomes of closed-tray and open-tray implant impression techniques for partially edentulous patients. Int J Prosthodont 2011;24:469-72.  Back to cited text no. 29
    
30.
Papaspyridakos P, Chen CJ, Gallucci GO, Doukoudakis A, Weber HP, Chronopoulos V. Accuracy of implant impressions for partially and completely edentulous patients: A systematic review. Int J Oral Maxillofac Implants 2014;29:836-45.  Back to cited text no. 30
    
31.
Osman MS, Ziada HM, Abubakr NH, Suliman AM. Implant impression accuracy of parallel and non-parallel implants: A comparative in-vitro analysis of open and closed tray techniques. Int J Implant Dent 2019;5:4.  Back to cited text no. 31
    
32.
Tafti AF, Hatami M, Razavi F, Ebadian B. Comparison of the accuracy of open-tray and snap-on impression techniques of implants with different angulations. Dent Res J (Isfahan) 2019;16:413-20.  Back to cited text no. 32
    
33.
Giménez B, Özcan M, Martínez-Rus F, Pradíes G. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin Implant Dent Relat Res 2015;17 Suppl 1:e54-64.  Back to cited text no. 33
    
34.
Flügge TV, Schlager S, Nelson K, Nahles S, Metzger MC. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner. Am J Orthod Dentofacial Orthop 2013;144:471-8.  Back to cited text no. 34
    
35.
Andriessen FS, Rijkens DR, van der Meer WJ, Wismeijer DW. Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: A pilot study. J Prosthet Dent 2014;111:186-94.  Back to cited text no. 35
    
36.
Wismeijer D, Chen ST. Proceedings of the 6th ITI consensus conference. Clin Oral Implants Res 2018;29 Suppl 16:5-7.  Back to cited text no. 36
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed498    
    Printed14    
    Emailed0    
    PDF Downloaded92    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]