• Users Online: 1721
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
RESEARCH
Year : 2023  |  Volume : 23  |  Issue : 1  |  Page : 50-56

An in vitro study of a custom-made device for thermoregulation of the mixing slab on the setting properties of zinc oxide eugenol impression paste


Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India

Correspondence Address:
Nagaraja P Upadhya
Department of Dental Materials, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal - 576 104, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jips.jips_337_22

Rights and Permissions

Aim: The present study was aimed to investigate the functional relationship between the mixing temperature and properties of a commercially available zinc oxide eugenol impression paste (ZnOE paste). Settings and Design: In-vitro study. Materials and Methods: A custom-made simulated mixing device was indigenously designed to maintain different mixing temperatures, simulating cold, ambient, and hot weather. A commercially available ZnOE paste was mixed according to the manufacturer's instructions in the simulated mixing device at the temperatures ranging from 10°C to 50°C. Initial setting time and consistency were measured according to A. D. A. Specification No. 16 (n = 8). A stainless-steel die having 25, 50, and 75 μm lines was used for surface detail reproduction. Detail reproduction of the stone casts of the impressions was evaluated with a stereomicroscope at 30 magnification (n = 8). The shear bond strength of ZnOE paste to self-cure acrylic tray resin was measured by using the UTM at a crosshead speed of 0.5 mm/min (n = 8). Statistical Analysis Used: Data were analyzed by using one-way analysis of variance (ANOVA) and Tukey's post hoc tests at a confidence interval of 95% (alpha =0.05) Results: Initial setting time, consistency, and detail reproduction of the ZnOE paste were affected by the mixing temperature (P < 0.001). Mixing ZnOE paste at a lower temperature of 10°C and higher temperatures of 40°C and 50°C resulted in shorter initial setting time, thicker consistency, and poor detail reproduction. However, no significant difference was obtained in the shear bond strength among the different mixing temperatures evaluated (P > 0.05). Conclusion: Based on this in vitro study, it is advisable to perform the manipulation of ZnOE paste at a clinical/laboratory temperature of 30°C for optimum performance. The simulated mixing device used in this study can be an alternative for extreme climatic conditions.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed308    
    Printed10    
    Emailed0    
    PDF Downloaded76    
    Comments [Add]    

Recommend this journal