The Journal of Indian Prosthodontic Society

ORIGINAL ARTICLE
Year
: 2009  |  Volume : 9  |  Issue : 1  |  Page : 13--17

Effect of connector design on the stress distribution of a cantilever fixed partial denture


Andre R Correia1, Joao C. Sampaio Fernandes1, Jose C. Reis Campos1, Mario A Vaz2, Nuno V Ramos3, Joao P Martins da Silva3 
1 Faculty of Dental Medicine of University of Porto, Porto, Portugal
2 Faculty of Engineering of University of Porto, Laboratory of Optics and Experimental Mechanics, Porto, Portugal
3 Laboratory of Optics and Experimental Mechanics/Institute of Mechanical Engineering and Industrial Management, Porto, Portugal

Correspondence Address:
Andre R Correia
Correia Serviço de Prótese Fixa, Faculdade de Medicina Dentária da Universidade do Porto. Rua Dr. Manuel Pereira da Silva, 4200-537 Porto
Portugal

Context: The design of a fixed partial denture (FPD) is very important to reduce the stresses generated over the supporting tissues. The connector area needs specific conditions due to biological and esthetic demands, and must be well assessed especially in the posterior regions. Aims: To make a stress analysis of a titanium cantilever fixed partial denture executed with the CAD-CAM system Everest®Kavo, in order to optimize the design of the structure, considering the shape and connector«SQ»s area. Materials and Methods: A finite element analysis mesh was constructed after post-processing the CAD-CAM design. This mesh was submitted to 500 N load to assess the stress distribution within the cantilever (molar) connector. To optimize the design of this connector, a simplified model was created and a stress analysis was done with the software Solidworks®, by modifying the connector«SQ»s shape and the load. Results: The stress values obtained were of 1.8 GPa, 6.5 times higher than titanium yield tensile strength. The stress analysis in the simplified model revealed lower stresses with an elliptical connector (994 MPa), or a 1 mm fillet (812 MPa). Lower loads suggested lower stresses of 540 MPa (125 N load) and 174 MPa (50 N load). Conclusions: Cantilever titanium connectors with 5.28 mm2 area are insufficient to withstand 500 N loads in a molar size cantilever, but may support normal physiologic loads of 50 N. The connectors should be more elliptical than circular to better withstand vertical loads, and the CAD software should permit the design of fillets in the connector/abutment surface. Future studies should evaluate the size of this fillet.


How to cite this article:
Correia AR, Fernandes JS, Campos JR, Vaz MA, Ramos NV, Martins da Silva JP. Effect of connector design on the stress distribution of a cantilever fixed partial denture.J Indian Prosthodont Soc 2009;9:13-17


How to cite this URL:
Correia AR, Fernandes JS, Campos JR, Vaz MA, Ramos NV, Martins da Silva JP. Effect of connector design on the stress distribution of a cantilever fixed partial denture. J Indian Prosthodont Soc [serial online] 2009 [cited 2022 Jan 19 ];9:13-17
Available from: https://www.j-ips.org/article.asp?issn=0972-4052;year=2009;volume=9;issue=1;spage=13;epage=17;aulast=Correia;type=0